Research Activity at the Pediatric Heart Valve Center
Translational Research | Clinical Research
The Pediatric Heart Valve Center develops innovative and creative solutions for all children and adults with heart valve congenital malformations. Our Surgery Department has a rich history of developing new surgical treatments that set the standard in pediatric cardiac surgery, and we seek to continue this proud tradition. Our research efforts are strengthened through our academic affiliations with both Columbia University and Cornell University, as well as our position within New York City, which is currently developing as the largest and most active city in the US and in the world for Biotech companies and biotech start-ups.
The Pediatric Heart Valve Research Lab aims to devise solutions in cardiovascular fundamental and translational research areas. It is focused on research areas related to heart valve biology, biomechanics and engineering. Our projects are at the intersection of biomedical engineering, mechanical engineering, polymer science, smart material development, mathematical sciences, clinical cardiology, cardiothoracic surgery, and developmental biology. Our ultimate goal is to help patients with heart disease by developing better diagnostic tools and more efficient therapeutic devices.
Translational Research Projects
The Pediatric Heart Valve Research Lab is currently developing several new valve prosthesis options for children with valve disease. Unlike current options, these new valves can grow and expand with their developing bodies, eliminating the need for repeat operations as they grow older. These new valves include:
- Tissue-engineered heart valve: This invention is based on the concept of in situ regeneration and cell recolonization of a valved tube made of a bioresorbable polymer which has been designed and produced specifically for this device. The use of a fully resorbable material would lead, ultimately, to the complete reconstruction of a valved vessel by an autologous living and growing tissue. The development of a composite prosthesis. whose two components (the tube and the valve) made of polymers featuring specific mechanical properties and resorbability rates, would ensure an optimal time-controlled recolonization of the implant. The grafting with biomimetic peptidic sequences would harness endogenous repair mechanisms through the recruitment of host-associated cells.
- Growing mechanical heart valve: Growing mechanical heart valves devices are being developed based on the latest advances in polymer science, mechanical engineering and manufacturing. The Pediatric Heart Valve Research Lab has ongoing collaborations with polymer engineers, biomedical engineers, and mechanical engineers inside and outside Columbia University.
- New polymeric materials for cusp extension or replacement: Current patch materials used for heart valve repair or reconstruction are somewhat pro-thrombotic, do little to promote heart valve regeneration or strengthen damaged tissue, and can cause maladaptive remodeling due to the mechanical and compliance mismatch. More importantly, Dacron and Gore-tex patches and grafts are incapable of growing with the child, often necessitating either a delay in surgery until the child reaches adulthood or multiple surgeries over the course of childhood. There is thus growing interest in the development of new smart materials for cusp extension or replacement.
Clinical Research Projects
The Pediatric Heart Valve database collects all the data already described in the Society of Thoracic Surgeons (STS) database but adds specific preoperative anatomical and imaging features as well as intraoperative technical details, and long term follow-up of the repaired or replaced valve and patient condition. Collecting this data helps us define the variables and techniques that are important for long-term successful valve surgery. Current studies include:
- Pediatric Valve Database: The purpose of this study is to develop and maintain a database comprised of clinical and surgical information about CUMC patients. who have had heart valve surgeries or catheter interventions. Collecting this data helps us define the variables and techniques that are important for long-term successful valve surgery.
- Xplore 2: This study investigates the early feasability and safety of the Xeltis Bioabsorbable Pulmonary Valved Conduit
- Congenital Multicenter Trial of Pulmonic Valve Dysfunction: This study investigates the early feasability and safety of the SAPIEN 3 Interventional THV.
- AoValve Repair Review: This study compares Cor Matrix with either autologous or bovine gluteraldehyde treated pericardium for aortic valve leaflet repairs by reviewing hospital course and following up on standard of care clinical outcomes prospectively. This is a muti center retrospective study that includes prospective review of clinical follow up.
- Melody Valve in Mitral and Tricuspid Position: This Multi-Center Trial looks at clinical outcomes of Melody Valves surgically implanted in mitral or tricuspid positions
- St. Jude’s Pediatric Valve (HALO): The purpose of the study is to provide evidence of safety and effectiveness to support a supplement to the St. Jude Medical Masters Series PMA (P810002) for approval of the 15mm MHV. The rationale for this study is to offer a replacement mitral valve for patients with anatomy that is too small for the currently commercially available valves ranging in size from 16mm to 37mm.
Other pending studies will look at :
- Clinical outcomes and prognostic factors of Complex mitral valve repair
- Outcomes of the Cone Reconstruction technique in Ebstein disease
- Outcomes of atrio ventricular Valve Repair in patients with single ventricle